Abstract

During the recent several decades, lateral flow immunoassay (LFIA) constructed with gold nanoparticle (AuNP) has been widely utilized to conveniently detect target analyte. However, AuNP-based LFIA has limitations, such as limited detection sensitivity and quantification capability. Herein, to overcome these constraints, we have developed cerium oxide nanoparticle (nanoceria)-based LFIA for C-reactive protein (CRP) detection in human serum samples. It was fabricated with nanoceria, a notable nanozyme that shows an oxidase activity to quickly oxidize organic substrate, such as 3,3',5,5'-tetramethylbenzidine (TMB), to produce colored product without any oxidizing agent (e.g., hydrogen peroxide), which is advantageous for realizing point-of-care testing (POCT) applications. By employing human blood serum spiked with CRP, the nanoceria-based LFIA showed two blue-colored lines on the test and control region within 3min via TMB oxidation, by the captured nanoceria through antigen-antibody interaction. The produced blue-colored lines were distinguished by naked eyes and quantitated with real images acquired by a conventional smartphone with the ImageJ software. With this strategy, target CRP was specifically determined down to 117ngmL-1 with high detection precisions yielding coefficient of variation of 9.8-11.3% and recovery of 90.7-103.2% using human blood serum samples. This investigation demonstrates the potential of oxidase-like nanoceria for developing LFIA, which is particularly useful in instrumentation-free POCT environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call