Abstract

A TEMPO-oxidized cellulose nanofibril (TEMPO-CNF)/water dispersion was mixed with an aqueous solution of hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), or carboxymethyl cellulose sodium salt (CMC). The mixtures were converted into TEMPO-CNF/cellulose ether composite films containing 0–5% TEMPO-CNFs by casting and drying of the aqueous mixtures. All the composite films had high light transparency. However, the tensile properties of the composite films of a given TEMPO-CNF content differed for the HPC and HEC, MC, and CMC matrices. The nano-reinforcing effect owing to TEMPO-CNFs was evident in the TEMPO-CNF/HPC composite films, which became strong but brittle. In contrast, the TEMPO-CNF/HEC composite films did not exhibit this nano-reinforcing effect. Transmission electron microscopy observation of the film cross-sections revealed that the TEMPO-CNF elements were homogeneously distributed in the 5% TEMPO-CNF/HPC composite film. In contrast, the TEMPO-CNF elements were densely present on the top and bottom surfaces of the 5% TEMPO-CNF/HEC composite film; the TEMPO-CNFs were heterogeneously distributed in the HEC matrix. The low gelation or aggregation concentrations of TEMPO-CNFs in water may have resulted in the different distribution states of TEMPO-CNFs, depending on the cellulose ether matrix used, and hence the different tensile behaviors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.