Abstract
Ceramic SiCN nanocomposites modified with nanocellulose derived defect-rich carbon nanofibers (CNFs-SiCN) were developed by thermolysis of nanocelulose-polysilazane single-source precursors (SSPs). Multi-loss mechanisms (i.g. polarization loss and conductive loss) were established in the SiCN ceramic nanocomposites by employing the defect-rich structure of CNFs. Cole-Cole circle plots indicate that the CNFs-SiCN ceramics possess strong polarization capability due to the defect-rich structure of the CNFs. Dielectric loss values fitted by the Debye theory showed that the proportion of polarization loss reaches an unprecedented high value, accounting for 52.1% of the total dielectric loss. When the content of nanocellulose is 10 wt% of SSPs, the minimal reflection coefficient (RCmin) and effective absorption bandwidth (EABs) of CNFs-SiCN ceramic can reach −36.3 dB and 3.0 GHz, respectively. This work may contribute new ideas for establishing multi-loss mechanisms in ceramic-based materials, finding a new application for nanocellulose, and shaping the design of novel absorbents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.