Abstract

The increasing commercialization of flexible electronic products has sparked a rising interest in flexible wearable energy storage devices. Supercapacitors are positioned as one of the systems with the most potential due to their distinctive advantages: high power density, rapid charge and discharge rates, and long cycle life. However, electrode materials face challenges in providing excellent mechanical strength while ensuring sufficient energy density. This study presents a method for constructing a flexible composite electrode material with high capacitance and mechanical performance by electrochemically depositing high-quality manganese dioxide (MnO2) onto the surface of a nanocellulose (CNF) and carbon nanotube (CNT) conductive film. In this electrode material, the CNF/CNT composite film serves as a flexible conductive substrate, offering excellent mechanical properties (modulus of 3.3 GPa), conductivity (55 S/cm), and numerous active sites. Furthermore, at the interface between MnO2 and the CNF/CNT substrate, C-O-Mn bonds are formed, promoting a tight connection between the composite materials. The assembled symmetric flexible supercapacitor (FSC) demonstrates impressive performance, with an areal specific capacitance of 934 mF/cm2, an energy density of 43.10 Wh/kg, a power density of 166.67 W/kg and a long cycle life (85 % Capacitance retention after 10,000 cycles), suggesting that they hold promise for FSC applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call