Abstract

Chemical mechanical polishing (CMP) is one of the important steps that involves during fabrication of semiconductor devices. This research highlights the importance of tungsten (W) polishing slurries consisting of a novel nonionic, heat-activated FeSi nanocatalyst on the performance of W chemical mechanical polishing. The results obtained from the polishing data showed a higher W removal rate of 5910 A/min with a slurry consisting of FeSi nanocatalyst at a polishing temperature of 80 °C. The increase in W polishing rate using FeSi slurry was explained on the basis of formation of a thicker oxide layer (WO3) due to the interaction between the W surface and hydroxyl radicals (·OH) generated via the reaction between FeSi and hydrogen peroxide at 80 °C. Higher ·OH generation and increase in oxygen depth profile of W film were confirmed by UV–Vis spectrometer and AES analysis, respectively. Compared to Fe(NO3)3 catalyst, the slurry with FeSi showed a higher static etch rate at 80 °C. Potentiodynamic polarization results obtained using FeSi slurry showed thicker WO3 passivation layer as compared to the slurry with Fe(NO3)3. The increase in the polishing rate of W CMP using slurry with FeSi nanocatalyst can be essentially attributed to the generation of much stronger oxidant ·OH due to its increased catalytic effect at a high polishing temperature of 80 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.