Abstract
Highly structured catalyst support pellets have been produced that possess multiple, but regiospecific and well-defined, pore geometries. Mesoporous silica pellets with controlled pore sizes have been synthesised using one type of pore template for the pellet core zone, whilst using a different type of template for the surrounding shell region. These materials offer the potential of adding precisely engineered diffusion barriers to the outside of structured catalyst supports, or providing different environments for pore structure-sensitive reactions in different parts of a catalyst pellet. The pore structures of the newly synthesised materials have been characterised using the recently introduced, integrated nitrogen sorption and mercury porosimetry technique. The data arising from the latter type of experiments on materials with cylindrical channels has been analysed using both the conventional BJH pore diameter technique, and also a new analysis method that can determine both the pore length distribution and interconnectivity. The transport properties of the new materials have also been assessed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.