Abstract

Nanocarriers are of paramount significance for drug delivery and nanomedicine technology. Given the imperfect systems and nonideal therapeutic effects, there are works to be done in synthesis as much as in biological studies, if not more so. Building the foundation of synthesis would offer more tools and deeper insights for exploring the biological systems with extreme complexity. This review aims at a broad-scope summary and classification of nanocarriers for drug delivery, with focus on the synthetic strategy and structural implications. The nanocarriers are divided into four categories according to the loading principle: molecular-level loading, surface loading, matrix loading, and cavity loading systems. Making comparisons across diverse nanocarrier systems would make it easier to see the fundamental characteristics, from where the weakness can be addressed and the strengths combined. The systematic comparisons may also inspire new ideas and methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.