Abstract

The reinforcing ability of the fillers results in significant improvements in properties of polymer matrix at extremely low filler loadings as compared to conventional fillers. In view of this, the present review article describes the different methods used in preparation of different rubber nanocomposites reinforced with nanodimensional individual carbonaceous fillers, such as graphene, expanded graphite, single walled carbon nanotubes, multiwalled carbon nanotubes and graphite oxide, graphene oxide, and hybrid fillers consisting combination of individual fillers. This is followed by review of mechanical properties (tensile strength, elongation at break, Young modulus, and fracture toughness) and dynamic mechanical properties (glass transition temperature, crystallization temperature, melting point) of these rubber nanocomposites. Finally, Payne and Mullin effects have also been reviewed in rubber filled with different carbon based nanofillers.

Highlights

  • One-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) graphite oxide and graphene constitute proven graphitic materials receiving considerable attention [1,2,3,4,5,6,7,8,9,10]

  • Functionalized multiwall carbon nanotubes (MWCNTs) (O-MWCNTs) showed improved mechanical properties of NR/SBR composites [55]. These findings showed that elongation at the break of NR/SBR composites filled with 1.5 phr O-MWCNTs under optimized conditions was found to be 450% as compared to 376% for pristine NR/SBR composites

  • elongation at break (EB) of VMQ is considerably reduced when filled with 0.375 wt % MWCNTs or graphene. Such loss in flexibility of nanocomposites of VMQ individually filled with MWCNTs or graphene is recovered in case of MWCNT-G (0.75 wt %)/VMQ nanocomposite. All of these findings clearly demonstrate the synergistic effect of MWCNT-G hybrid on TS as well as EB of VMQ composites

Read more

Summary

Introduction

One-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) graphite oxide and graphene constitute proven graphitic materials receiving considerable attention [1,2,3,4,5,6,7,8,9,10] This is mainly attributed to their outstanding properties, such as larger surface area, excellent thermal, mechanical, electrical, and optical properties. Agglomeration remains one of the most common problems with CNTs as well as graphene due to the presence of inter-tubular interaction and the restacking of graphene sheets, respectively Their poor dispersion in many common organic solvents as well as in polymer matrices remains another issue. EEllaassttoommeerrss,, aaccccoorrddiinngg ttoo tthhee ggeenneerraall IIUUPPAACC ddeefifinniittiioonn,, aarree ppoollyymmeerrss tthhaatt eexxhhiibbiitt rruubbbbeerr--lliikkee eellaassttiicciittyy. TThhee uunniiqquuee pprrooppeerrttiieess ooff tthhee rruubbbbeerrccoommppoosistietsesfifillelldedwwithithcacrbarobnonnannoanfiollfierlslehrsavheaavtetraatcttreadctiendduinstdryu.stIrny.vieInw voifewthiso,fththeisse, tchaersbeoncarcboonntacinoinntgainfiilnlegrsfilhlearss hbaesenbereencerievcienigvincogncsoidnesirdaebrleabalemaomunout notfoaftatettnetniotinonasasffiilelerrss iinn rruubbbbeerr nnaannooccoommppoossiitteess dduuee ttoo tthheeiirr ssuuppeerriioorr pprrooppeerrttiieess. Anontyrkeiqnudiroef spoollvyemnte.rsA, nsuychkiansdthoefrpmoolypmlasetrisc, osur cthherams otsheetrtimngo,plcaasnticbeoursetdhetromporseepttainreg,nacnanocobme puosseitdes tboy pthreepsearteechnnaniqouceosm. pIotsmiteasy bbey ntohteesde tthecaht npirqoupeesr.tiIetsmofaypoblyemneortendanthoacot mprpoopseitretiseasreofdpetoelrymmienrednabnyotchoemdpiosspieterssioanreodf ethteermfililnere(ds)biyn tthhee pdoislpymeresiromn aotfritxheanfidllearl(sso) dinepthenedpoolnympoelrymmaetrr-ifixllaenrdinatelsroacdtieopnesn.dInonvipewolyomf tehr-isfi,lldeirffienrteenrtacmtieotnhso. dIns uvsieewd inoffatbhrisic, adtiioffneroefnpt omlyemtheordnsanuosecodminpofsaibtersicbaytiomnecohfapnoiclaylmbelernndainnogc, osmolpuotisointebs lebnydminegc,hinan-siictaul pbolelynmdienrgiz, atsioolnu,teiotcn. cboluelnddriensgu,ltiinn-sviaturyinpgoldyemgereriezsaotifodni,speetrcs.iocno,ualsdevriedseunlctedinfrovmarsycianngnidneggerleeecstroonf mdiiscproegrsriaopnh,s a(SsEMev)i,dfieenldceedmifsrsoiomn SsEcMan,ntrinangsmeliesscitoronnelemctircornogmraicprhossco(pSyEM(T)E, Mf)ie, ladndehmigishsiroensoluSEtiMon, TtrEaMns.mTaisbslieosn1–e4lerecctroornds mthiecrcoasrbcoopny-ba(sTeEdMfi)ll,erasn, dmehthigohdolroegsoylfuotliloonweTdEaMnd. mTaobrlpehsol1o–g4y arcehcoiervdesd tfhoer NcaRrb, oSBn-Rb,aNseBdRf,iallnedrsS, Rmreuthbobderolnoagnyocfoolmlopwoesditeasn. d morphology achieved for NR, SBR, NBR, and SR rubber nanocomposites

Preparation Method
Preparation Method Ultrasonically assisted latex mixing process
Method of Preparation
Preparative Method Solution mixing method
Preparative Method Solution blending
Mechanical Properties of Rubber Nanocomposites of Carbon Based Fillers
Mechanical Properties of EVA Rubber Nanocomposites
Findings
Summary and Outlook

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.