Abstract
Nanocalorimeters, or microfabricated calorimeters, provide a promising way to characterize the thermal process of biological processes, such as biomolecule interactions and cellular metabolic activities. They enabled miniaturized heat measurement onto a chip device with potential benefits including low sample consumption, low cost, portability, and high throughput. Over the past few decades, researchers have tried to improve nanocalorimeters' performance, in terms of sensitivity, accuracy, and detection resolution, by exploring different sensing methods, thermal insulation techniques, and liquid handling methods. The enhanced devices resulted in new applications in recent years, and here we have summarized the performance parameters and applications based on categories. Finally, we have listed the current technical difficulties in nanocalorimeter research and hope for future solutions to overcome them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.