Abstract
Mesoporous hard carbon is obtained by pyrolyzing a mixture of sucrose and nanoscaled calcium carbonate (CaCO3) particles. The microstructure of the carbon is characterized by N2 adsorption/desorption, Hg porosimetry, field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectroscopy. The electrochemical performances of the carbon as an anode material for lithium ion batteries are evaluated by galvanostatic charge/discharge and cyclic voltammetry tests. It is shown that this mesoporous carbon possesses high capacity, good cycling performance and rate capability, indicating the promising application of nano-CaCO3 particle as template in massive fabrication of mesoporous carbon anode materials for lithium ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.