Abstract

Nanobubbles, whose existence on hydrophobic surfaces immersed in water has previously been inferred from measurements of long-ranged attractions between such surfaces, are directly imaged by tapping mode atomic force microscopy. It is found that the nanobubbles cover the surfaces in an irregular, interconnected or close-packed network whose morphology is dependent on pH and whose lifetimes are at least of the order of hours. Their height is of the order of 30 nm and their radius of curvature is of the order of 100– 300 nm . It appears that the nanobubbles form from a solution supersaturated with air. A thermodynamic and statistical mechanical analysis of the homogeneous nucleation of liquid droplets from a supersaturated vapour shows that although a single droplet can be in equilibrium with a finite volume of gas, for a gas reservoir the equilibrium state is represented by a single macroscopic droplet, which grows by collisions and by Ostwald ripening. It is concluded that the electric double-layer repulsion between neighbouring nanobubbles on the hydrophobic surface plays a role in their stabilisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call