Abstract

This study investigates the effect of nanobubbles (NBs) on the adsorption in water. In batch adsorption experiments, as liquid medium deionized water, with or without NBs, was used in order to remove a particular heavy metal. Lead ions (Pb(II)) and low-cost activated carbon produced from pyrolysis of potato peels (ACP) were used as model pollutant and adsorbent material, respectively. The adsorption capacity of Pb(II) was found to be approximately similar either in the presence (Qmax = 171 mg/g) or absence of NBs in water (Qmax = 167 mg/g). On the contrary, the major effect of NBs was to accelerate the adsorption process by 366%. This impressively high acceleration will be the basis in future research to decrease the adsorption equilibrium time and sequentially increase the number of adsorption-desorption cycles in reuse modes. A proposed mechanism exported from the experimental results, in which NBs act as carriers (“buses”), was proposed based on the already known theory; the inherent property of NBs to accept charged particles onto their interface is considered to assist diffusion and penetration phenomena of lead ions into the activated carbon pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.