Abstract

Herein, we report the use of a polarity-sensitive, solvatochromic fluorophore Nile red to label and probe individual hydrogen nanobubbles on the surface of an indium-tin oxide (ITO) electrode. Nanobubbles are generated from the reduction of water on ITO and fluorescently imaged from the transient adsorption and desorption process of single Nile red molecules at the nanobubble surface. The ability to label and fluorescently image individual nanobubbles with Nile red suggests that the gas/solution interface is hydrophobic in nature. Compared to the short labeling events using rhodamine fluorophores, Nile red-labeled events appear to be longer in duration, suggesting that Nile red has a higher affinity to the bubble surface. The stronger fluorophore-bubble interaction also leads to certain nanobubbles being co-labeled by multiple Nile red molecules, resulting in the observation of super-bright and long-lasting labeling events. Based on these interesting observations, we hypothesize that Nile red molecules may start clustering and form some kind of molecular aggregates when they are co-adsorbed on the same nanobubble surface. The ability to observe super-bright and long-lasting multifluorophore labeling events also allows us to verify the high stability and long lifetime of electrochemically generated surface nanobubbles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call