Abstract
BackgroundT cell engagers (TCEs) have been established as an emerging modality for hematologic malignancies, but solid tumors remain refractory. However, the upregulation of programmed cell death 1 (PD-1) is correlated with T cell dysfunction that confer tumor-mediated immunosuppression. Developing a novel nanobody-based trispecific T cell engager (Nb-TriTE) would be a potential strategy to improve therapeutic efficacy.MethodsGiven the therapeutic potential of nanobodies (Nbs), we first screened Nb targeting fibroblast activation protein (FAP) and successfully generated a Nb-based bispecific T cell engager (Nb-BiTE) targeting FAP. Then, we developed a Nb-TriTE by fusing an anti-PD-1 Nb to the Nb-BiTE. The biological activity and antitumor efficacy of the Nb-TriTE were evaluated in vitro and in both cell line-derived and patient-derived xenograft mouse models.ResultsWe had for the first time successfully selected a FAP Nb for the generation of novel Nb-BiTE and Nb-TriTE, which showed good binding ability to their targets. Nb-TriTE not only induced robust tumor antigen-specific killing, potent T cell activation and enhanced T cell function in vitro, but also suppressed tumor growth, improved survival and mediated more T cell infiltration than Nb-BiTE in mouse models of different solid tumors without toxicity.ConclusionsThis novel Nb-TriTE provides a promising and universal platform to overcome tumor-mediated immunosuppression and improve patient outcomes in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.