Abstract

Along the twentieth century, the electronic properties of bismuth have been widely studied, especially in relation with its magnetoresistive and thermoelectric responses. In this context, a particular emphasis has been made on electronic confinement effects in bismuth nanostructures (or nanobismuth). In the recent years, the optical properties of bismuth nanostructures are focusing a growing interest. An increasing number of reports point at the potential of such nanostructures to support plentiful optical resonances over an ultrabroad spectral range: “interband plasmonic” resonances in the ultraviolet, visible, and near-infrared; dielectric Mie resonances in mid- and far-infrared; and conventional free-carrier plasmonic resonances in the far-infrared and terahertz. With the aim to provide a comprehensive basis for exploiting the full optical potential of bismuth nanostructures, we review the current progress in their controlled fabrication, the trends reported (from theoretical calculations and experimental observations) for their optical and plasmonic response, and their emerging applications, including photocatalysis and switchable metamaterials.

Highlights

  • Optical resonances in nanostructures much smaller than the wavelength of light have attracted a broad attention because they allow operating light in small dimensions, for example, allowing efficient harvesting or confinement at the nanoscale [1]. e wavelength of the resonances can be tuned in a static way, by properly engineering the nanostructure composition, shape and size, or a dynamic way through changes in the surrounding medium [1,2,3,4,5,6,7].Nowadays, a wide range of optically resonant nanostructures rely on the excitation of surface plasmons, that is, the collective oscillations of free charge carriers

  • After a synthetic presentation of the optoelectronic properties of bulk Bi, we review the progress in the fabrication of Bi nanostructures, in the theoretical calculations and experimental observations of their optical and plasmonic responses, and the works about the related emerging applications

  • Bi nanostructures have the potential to display plasmonic effects in two spectral regions: (i) in the far-IR and THz due to the collective excitation of free carriers and (ii) in the UV-Vis-near-IR regions where, unlike the conventional plasmonic resonances of noble metals driven by the collective excitation of free electrons, the resonances in Bi nanostructures would be totally induced by interband transitions and called “interband plasmonic” resonances [19]

Read more

Summary

Introduction

Optical resonances in nanostructures much smaller than the wavelength of light have attracted a broad attention because they allow operating light in small dimensions, for example, allowing efficient harvesting or confinement at the nanoscale [1]. e wavelength of the resonances can be tuned in a static way, by properly engineering the nanostructure composition, shape and size, or a dynamic way through changes in the surrounding medium (its temperature, refractive index, illumination, and so on) [1,2,3,4,5,6,7]. After a synthetic presentation of the optoelectronic properties of bulk Bi, we review the progress in the fabrication of Bi nanostructures, in the theoretical calculations and experimental observations of their optical and plasmonic responses, and the works about the related emerging applications. Such a review will help to assess the potential of nanobismuth as a new material for plasmonics and nanophotonics with ultrabroad spectral response from the UV to THz region

Optoelectronic Properties of Bulk Bismuth
The Growth of Nanobismuth
UV-Vis-Near-IR Spectral Region
IR to THz Region
Emerging Applications of Nanobismuth
Findings
Conclusions and Perspectives
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call