Abstract
Micropollutants contamination and global warming are critical environmental issues that require urgent attention due to natural and anthropogenic activities posing serious threats to human health and ecosystems. However, traditional technologies, such as adsorption, precipitation, biodegradation, and membrane separation, are facing challenges of low utilization efficiency of oxidants, poor selectivity, and complex in-situ monitoring operations. To address these technical bottlenecks, nanobiohybrids, synthesized by interfacing the nanomaterials and biosystems, have recently emerged as eco-friendly technologies. In this review, we summarize the synthesis approaches of nanobiohybrids and their utilization as emerging environmental technologies for addressing environmental problems. Studies demonstrate that enzymes, cells, and living plants can be integrated with a wide range of nanomaterials including reticular frameworks, semiconductor nanoparticles and single-walled carbon nanotubes. Moreover, nanobiohybrids demonstrate excellent performance for micropollutant removal, carbon dioxide conversion, and sensing of toxic metal ions and organic micropollutants. Therefore, nanobiohybrids are expected to be environmental friendly, efficient, and cost-effective techniques for addressing environmental micropollutants issues and mitigating global warming, benefiting both humans and ecosystems alike.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.