Abstract

In addition to the physical barrier, the epidermis acts as a natural barrier against microbial proliferation. It is prone to bacterial infections on the skin and in the nose, such as Staphylococcus aureus, as well as a variety of other skin illnesses. Green nanomaterial production, which eliminates the use of harmful chemicals while simultaneously reducing time, is gaining popularity in the nanotechnology area. Using the leaf extract of the pharmacologically valuable plant Moringa oleifera, we described a green synthesis of ZnO NPs (zinc oxide nanoparticles). ZnO NPs had a particle size of 201.6 nm and a zeta potential of -56.80 mV, respectively. A novel aminoketone antibacterial medication was synthesized and tested for antibacterial activity using ZnO NPs as a phytocatalyst in this work. This method produces high yields while maintaining efficient and gentle reaction conditions. Moringa oleifera extract can reduce ZnO to ZnO NPs in a straightforward manner. FT-IR, 1H-NMR, 13C-NMR, mass spectra, elemental analysis, and morphological analysis were used to synthesize and describe the antibacterial medicines (1a-1g) and (2a-2g). In addition, antibacterial activity was evaluated against bacteria such as Enterococcus faecalis and Staphylococcus aureus, and compound 1c (63 μg/mL, E. faecalis) and compound 2e (0.12 μg/mL, S. aureus) were found to be very active when compared to other medications. mupirocin is used as a reference. In addition, studies of in silico molecular docking for the bacterial DsbA protein were conducted. The strong molecules 1c (-4.3 kcal/mol) and 2e (-5.1 kcal/mol) exhibit a high binding affinity through hydrogen bonding, according to docking tests.

Highlights

  • The skin is the first line of protection against germs and bacteria among the body’s primary organs

  • Using the leaf extract of the pharmacologically valuable plant Moringa oleifera, we described a green synthesis of zinc oxide nanoparticles (ZnO NPs)

  • Antibacterial activity was evaluated against bacteria such as Enterococcus faecalis and Staphylococcus aureus, and compound 1c (63 μg/mL, E. faecalis) and compound 2e (0.12 μg/mL, S. aureus) were found to be very active when compared to other medications. mupirocin is used as a reference

Read more

Summary

Introduction

The skin is the first line of protection against germs and bacteria among the body’s primary organs. The integrity of the skin is jeopardized when it is damaged. Despite substantial research into wound healing mechanisms, many topics remain unresolved. Chemical, and microbiological qualities, the skin is a crucial barrier in wound closure. The physiological regulation of skin wound healing is more complicated than you may expect since many distinct cell types and mediators interact in a complex way [1]. Skin cells are exposed to acute phase signals such as damage-associated or pathogen-specific molecular patterns, which are identified on their parts by toll-like receptors, causing inflammation to begin and continue [3, 4].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call