Abstract

Nanobacterial cellulose (NBC) was produced and incorporated into biodegradable poly(vinyl alcohol) (PVA) in different weight ratios to obtain polymer nanocomposite membranes. The physicochemical properties of the membranes were studied using Fourier transform infrared (FTIR) spectroscopy, a universal testing machine (UTM), thermogravimetric analysis (TGA), wide-angle X-ray diffraction (WAXD) techniques, and field emission scanning electron microscopy (FESEM). FTIR confirmed the consolidation of NBC into PVA by exhibiting significant changes in the peaks compared to NBC and PVA individually. The highest tensile strength of 53.33 MPa and 235.30% elongation at break of the membrane M-10 mass % NBC was obtained, illuminating that NBC provides stiffness and PVA imparts elasticity. WAXD revealed that the crystalline nature of the membrane increases up to 10 mass % and decreases beyond it. The effect of NBC on the poly(vinyl alcohol) membranes for food packaging was investigated systematically. Among all the membranes, M-10 mass % NBC was found to be the most suitable for packaging applications. Membranes had antimicrobial activity against food microbes and showed degradability behavior in the soil. The tests on membranes for packaging revealed that fruits were protected from spoilage caused by microorganisms. Hence, the prepared membranes could be used as an alternative to conventional plastics for packaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.