Abstract

An Exendin-4 analogue that was conjugated with 68Ga exhibited an excellent diagnostic effect on insulinoma in clinical practice. On account of its low molecular weight and short hydration radius, 68Ga-Exendin-4 showed high accumulation in kidney tissues. Nanoparticle-mediated strategies have attracted much attention due to polyvalent properties and the size amplification effect. In this study, Exendin-4 derivatives of radionuclide nanodevices were developed and evaluated. The Exendin-4 derivatives consisting of a ternary block recombinant protein were purified by an inverse transition cycle (ITC) and allowed to self-assemble into a nanodevice under physiological conditions. Our results showed that the nanoassemblies of Exendin-4 derivatives formed homogeneous spherical nanoparticles, exhibited outstanding affinity for insulinoma cells, and could be deposited in insulinoma tissues in vivo. The nanoassembly-mediated Exendin-4 derivatives showed fivefold reduced renal retention and exhibited an outstanding tumor-suppression effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call