Abstract

Natural melanins are biocompatible conductors with versatile functionalities. Here, we report fabrication of multifunctional poly(vinyl alcohol)/melanin nanocomposites by layer-by-layer (LBL) assembly using melanin nanoparticles (MNPs) directly extracted from sepia officinalis inks. The LBL assembly offers facile manipulation of nanotextures as well as nm-thickness control of the macroscale film by varying solvent qualities. The time-resolved absorption was monitored during the process and quantitatively studied by fractal dimension and lacunarity analysis. The capability of nanoarchitecturing provides confirmation of complete monolayer formation and leads to tunable iridescent reflective colors of the MNP films. In addition, the MNP films have durable electrochemical conductivities as evidenced by enhanced charge storage capacities for 1000 cycles. Moreover, the MNP covered ITO (indium tin oxide) substrates significantly reduced secretion of inflammatory cytokines, TNF-α, by raw 264.7 macrophage cells compared to bare ITO, by a factor of 5 and 1.8 with and without lipopolysaccharide endotoxins, respectively. These results highlight the optoelectronic device-level tunability along with the anti-inflammatory biocompatibility of the MNP LBL film. This combination of performance should make these films particularly interesting for bioelectronic device applications such as electroceuticals, artificial bionic organs, biosensors, and implantable devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call