Abstract
The extracellular matrix comprises structures that support the architectural organization of virtually all animal tissues. Within this architecture, two classes of protein assemblies found as long slender fibrils (collagen and fibrillin) characterize the bulk of the extracellular matrix. In both classes of fibrous protein, the molecular organization within a fibril ensures that the properties of the individual molecules transcend to the nanostructural and mesoscopic levels of structural organization and thence the tissue itself. The composition of the fibrils, in conjunction with other biomolecules and their suprafibrillar architecture, facilitates the formation of tissues as diverse as skin, tendon, cornea ciliary zonules and aorta. Here the relative tear resistance, strength, transparency and optical properties are paramount for proper function. Many structural investigations of fibrous protein structure have relied heavily on the use of synchrotron radiation in order to elucidate molecular packing, primarily due to the distinct benefits that X-ray diffraction provides, such as minimal sample preparation, rapid data collection and in situ mechanical testing. In this paper, an overview of the investigations that have revealed different levels of molecular architecture in fibril-based tissues is presented. Emerging future technology and how this can be matched with the pressing questions in extracellular matrix biology are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.