Abstract

For the first time, this study shows the nanoarchitectonic process to obtain an acetogenin-enriched nanosystem (AuNPs-Ac) using an aqueous extract from Annona cherimola Mill (ACM) composed of gold nanoparticles embedded in an organic matrix that acts as stabilizing agent and presents anti-inflammatory activity and cytotoxical effect against HepG2 cell line, promoting apoptosis. The synthesis of AuNPs-Ac was confirmed by X-ray diffraction analysis, showing metallic gold as the only phase, and the scanning transmission microscope showed an organic cap covering the AuNPs-Ac. Fourier-transformed infrared suggests that the organic cap comprises a combination of different annonaceous acetogenins, alkaloids, and phenols by the presence of bands corresponding to aromatic rings and hydroxyl groups. High-Performance Liquid Chromatography has demonstrated the presence of annonacin, a potent acetogenin, in the extract of ACM. An in vitro anti-inflammatory activity of the extract of ACM and the AuNPs-Ac was performed using the albumin denaturation method, showing a nonlinear response, which is better than sodium diclofenac salt in a wide range of concentrations that goes from 200 to 400 µg/mL with both samples. The viability assay was studied using trypan blue, treating IMR90 and HepG2 at different concentrations of AuNPs-Ac. The results defined a median lethal dose of 800 µg/mL against HepG2 through apoptosis according to the ratio of caspase-cleaved 9/alpha-tubulin evaluated. It was also demonstrated that the nanosystem presents a higher cytotoxic effect on the HepG2 cell line than in IMR90, suggesting a targeted mechanism. In addition, the nanosystem performs better than using only the extract of ACM in the anti-inflammatory or antiproliferative test, attributed to their higher surface area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call