Abstract
Plasmonic nanoantennas for visible and infrared radiation strongly improve the interaction of light with the matter on the nanoscale due to their strong near-field enhancement. In this study, we investigate a double-resonant plasmonic nanoantenna, which makes use of plasmonic field enhancement, enhanced outcoupling of second harmonic light, and resonant lattice effects. Using this design, we demonstrate how the efficiency of second harmonic generation can be increased significantly by fully embedding the nanoantennas into nonlinear dielectric material ZnO, instead of placing them on the surface. Investigating two different processes, we found that the best fabrication route is embedding the gold nanoantennas in ZnO using an MBE overgrowth process where a thin ZnO layer was deposited on nanoantennas fabricated on a ZnO substrate. In addition, second harmonic generation measurements show that the embedding leads to an enhancement compared to the emission of nanoantennas placed on the ZnO substrate surface. These promising results facilitate further research to determine the influence of the periodicity of the nanoantenna arrangement of the resulting SHG signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.