Abstract

The work researches the influence of metal mixing enthalpy on spontaneous nanoalloying of coagulated clusters formed when intertwined Fe/Ag, Ni/Ag, Nb/Сu and Pb/Сu wires with equiatomic composition are exploded. The analysis of temporal dependencies of currents and voltages has shown that the intervals between the successive explosions of Fe/Ag, Ni/Ag, Nb/Сu and Pb/Сu wires are 0.38, 0.26, 0.43 and 0.4 μs, respectively. This explains their asynchronous destruction. It has been found that when wires are exploded, bimetallic Janus and core-shell nanoparticles are formed. The obtained data makes it possible to conclude that when wires explode non-synchronously, clusters coagulate and atoms of metals subsequently intermix. The results of the research demonstrate that the explosion of two wires made of metals with positive mixing enthalpy (from 8 to 116 kJ/g) is a process that can be used to obtain bimetallic nanoparticles with complex structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.