Abstract

In this work, high-temperature solid-phase techniques have been used to produce both natural and nano ZrO2-modified Li-rich manganese-based cathodic materials. Several characterizations were carried out to evaluate the morphology, structure, electrical state, and elemental content of unmodified as well as nano-modified Li1.2Ni0.13Co0.13Mn0.54O2. The results of electrochemical tests showed that cathodic materials modified with 0.02 mol nano ZrO2 performed extremely well electrochemically, with initial discharge capacity and coulombic efficiency at 0.1 C reaching up to 308.5 mAh g-1 and 95.38%, respectively. After 170 cycles at 0.2 C, a magnitude of 200.2 mAh g-1 for the final discharge capacity was attained, which translates to a capacity retention of 68.68%. Calculations using density functional theory (DFT) show that adding nanoscale ZrO2 speeds up Li-ion diffusion and increases conductivity by lowering the barrier energy for the migration of Li ions. The structural layout of Li-rich manganese-based cathodic materials may therefore be clarified by the proposed modification technique for nano ZrO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.