Abstract

As typical transition metal dichalcogenides (TMDC), tungsten selenide (WSe2) nanosheets (nano-WSe2) are widely used in various fields due to their layered structures and highly tunable electronic and magnetic properties, which results in the unwanted release of tungsten (W) and selenium (Se) into the environment. However, the environmental effects of nano-WSe2 in plants are still unclear. Herein, we evaluated the impacts and fate of nano-WSe2 and micro-WSe2 in rice plants (Oryza sativa L.). It was found that both nano-WSe2 and micro-WSe2 did not affect the germination of rice seeds up to 5000 mg/L but nano-WSe2 affected the growth of rice seedlings with shortened root lengths. The uptake and transportation of WSe2 was found to be size-dependent. Moreover, W in WSe2 was oxidized to tungstate while Se was transformed to selenocysteine, selenomethionine, SeIV and SeVI in the roots of rice when exposed to nano-WSe2, suggesting the transformation of nano-WSe2 in rice plants. The exposure to nano-WSe2 brought lipid peroxidative damage to rice seedlings. However, Se in nano-WSe2 did not contribute to the synthesis of glutathione peroxidase (GSH-Px) since the latter did not change when exposed to nano-WSe2. This is the first report on the impacts and fate of nano-WSe2 in rice plants, which has raised environmental safety concerns about the wide application of TMDCs, such as WSe2 nanosheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call