Abstract

Due to dwindling terrestrial uranium resources and escalating ecological pressures, the long-term viability of uranium supply has become a critical concern. The immense uranium reserves in seawater present a potential solution, yet extraction technology faces dual challenges of efficiency and adaptability to complex marine environments. Current interconnected porous adsorbents, despite their high flux properties, are limited by low specific surface area and weak mechanical strength, which constrain their effectiveness. Here, inspired by the unique hierarchical structures of marine organisms, we describe an organic gel adsorbent with supermacroporous and interconnected channels (10 ∼ 100 µm) adorned with "nano-tentacle" structures. This design significantly enhances the specific surface area by 18 times, increasing adsorption sites and imparting antibacterial properties. Notably, this adsorbent maintains structural integrity and superior mechanical strength (1.32 MPa tensile and 2.44 MPa compressive strength) even when fully saturated. During a 23-day trial in natural seawater, a uranium adsorption rate of 0.332 mg g⁻¹ day⁻¹ was achieved. This work offers a pioneering approach for the design and fabrication of hierarchical structured adsorbents, highlighting the immense potential of extracting uranium from seawater for sustainable energy production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.