Abstract

We demonstrated previously that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) play a critical role in angiogenesis. Here, we examine whether this pro-angiogenic efficacy is enhanced in EVs derived from MSCs overexpressing GATA-4 (MSCGATA−4). Methods and Results. EVs were isolated from MSCGATA-4 (EVGATA-4) and control MSCs transduced with an empty vector (EVnull). EVs from both cell types were of the same size and displayed similar molecular markers. Compared with EVnull, EVGATA-4 increased both a tube-like structure formation and spheroid-based sprouting of human umbilical vein endothelial cells (HUVECs). The EVGATA-4 increased the numbers of CD31-positive cells and hemoglobin content inside Matrigel plugs subcutaneously transplanted into mice for 2 weeks. Moreover, EVGATA-4 encapsulated higher levels of let-7 family miRs compared to EVnull. The transfer of exosomal let-7 miRs into HUVECs was recorded with an accompanied down-regulation of thrombospondin-1 (THBS1) expression, a major endogenous angiogenesis inhibitor. The loss-and-gain of function studies of let-7 miRs showed that let-7f knockdown significantly decreased EVGATA-4-mediated vascularization inside Matrigel plugs. In contrast, let-7f overexpression promoted HUVEC migration and tube formation. Conclusion. Our results indicate that EVs derived from genetically modified MSCs with GATA-4 overexpression had increased pro-angiogenic capacity due to the delivery of let-7 miRs that targeted THBS1 in endothelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call