Abstract
In this paper, the ethylene adsorption capacities of the nano-sized carbon hollow spheres (CNB) and active carbon (AC), the Pd (PdCl2) impregnated CNB or AC (Pd/CNB, Pd/AC) and heat treatment under various conditions, were studied at different ethylene concentrations from 64 to 1060 ppm. The results indicated that AC had a good ethylene adsorption capacity at high ethylene concentration. Pd impregnation decreased the ethylene adsorption capacity of AC. Heat treatment and H2 activation could increase the ethylene adsorption capacity, but also lowered than AC itself. CNB had lower ethylene adsorption capacity than AC, but heat treatment and H2 activation could increase its ethylene adsorption capacity markedly. With activating condition from heat treatment in N2 at 300 °C to activation in H2/N2 at 100 °C, to activation in H2 at 200 °C, and to activation in H2 at 300 °C, the ethylene adsorption capacity of Pd/CNB was increased regularly. At low ethylene concentration, viz., 64 ppm, the ethylene adsorption quantities (q a) by Pd/CNB activated in H2 at 200 or 300 °C were higher than any other adsorbents. So, activated in H2 atmosphere at higher than 100 °C, Pd/CNB is particularly advantaged for adsorbing low concentration of ethylene. Amongst all the adsorbents used, Pd/CNB activated in H2 atmosphere at 300 °C for 2 h has the highest ethylene adsorption capacity at lower concentration than 125 ppm. In addition, all the CNB, Pd/CNB, AC, and Pd/AC samples can be easily regenerated in airflow for more than 3 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.