Abstract

Wind power is a promising electricity source. Nevertheless, wind turbine blade icing can cause severe problems in turbine operation. In this study, SiO2 spherical nanoparticles (∼90nm), produced by RF (radio frequency) plasma spheroidization, were mixed with E51, PDMS, and ethyl acetate, and sprayed on the surface of aluminum plates and regular power windmill fan blades which were already coated with polyurethane primer. XPS and IR spectroscopies revealed the development of SiC and SiPh (Ph=phenolic ring) bonds, whose formation should be favored by the ultrasound and curing processes at 50°C. The integrity of the coating/substrate interface, whose strength is ascribed to hydrogen bonds, was maintained after 100 icing-melting cycles. The coatings display superhydrophobic behavior and excellent anti-icing performance, along with stability in abrasion, sunlight and self-cleaning ability towards solid pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.