Abstract
The cold-water fish rainbow trout (Oncorhynchus mykiss) shows poor resistance to heat, which is the main factor restricting their survival and yield. With the advancement of nanotechnology, nano-selenium (nano-Se) has emerged as a key nano-trace element, showing unique advantages, including high biological activity and low toxicity, for studying the response of animals to adverse environmental conditions. However, little is still known regarding the potential protective mechanisms of nano-Se against heat stress-induced cellular damage. Herein, we aimed to investigate the mechanism underlying the antagonistic effects of nano-Se on heat stress. Four groups were assessed: CG18 (0μg/mL nano-Se, 18°C), Se18 (5.0μg/mL nano-Se, 18°C), CG24 (0μg/mL nano-Se, incubated at 18°C for 24h and then transferred to 24°C culture), and Se24 (5.0μg/mL nano-Se, incubated at 18°C for 24h and then transferred to 24°C culture). We found that after heat treatment (CG24 group), T-AOC, GPx, and CAT activities in rainbow trout hepatocytes showed a decrease of 36%, 33%, and 19%, respectively, while ROS and MDA levels showed an increase of 67% and 93%, respectively (P < 0.05). Meanwhile, the mRNA levels of the apoptosis-related genes caspase3, caspase9, Cyt-c, Bax, and Bax/Bcl-2 in the CG24 group were 41%, 47%, 285%, 65%, and 151% higher than those in the CG18 group, respectively, while those of PI3K and AKT were 31% and 17% lower, respectively (P < 0.05). Besides, flow cytometry analysis showed an increase in the level of apoptotic cells after heat exposure. More importantly, we observed that nano-Se cotreatment (Se24 group) remarkably attenuated heat stress-induced effects (P < 0.05). We conclude that heat stress induces oxidative stress and apoptosis in rainbow trout hepatocytes. Nano-Se ameliorates heat stress-induced apoptosis by activating the PI3K/AKT pathway. Our results provide a new perspective to improve our understanding of the ability of nano-Se to confer heat stress resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.