Abstract

The inorganic-organic composite consisting of nano-scaled hydroxyapatite (HAp) and silk fibroin (SF) fibers was prepared through covalent linkage to develop a novel biomaterial for a soft-tissue-compatible material. The preparation of the composite was conducted through the three-step procedure consisting of chemical modification using 2-methacryloxyethyl isocyanate (MOI) monomer to introduce vinyl groups on SF, poly(gamma-methacryloxypropyl trimethoxysilane) (MPTS) graft-polymerization on SF, and coupling process between the surface of polyMPTS-grafted SF and HAp nano-particles. The amount of the graft-polymerization of polyMPTS through vinyl groups was well controlled by the reaction time. The nano-crystals were subsequently coated on the grafted fibers by heating at 120 degrees C for 2 h in a vacuum. The crystalline structure of the SF substrate did not change in the procedure. In the SEM observation of the composite surface, it was found that the bonded nano-crystals were separated and partially aggregated with several crystals attached on the SF fiber surface. The HAp particles adhered more strongly on the SF surface with separation or aggregation of several crystals than on the surface of the original SF after ultrasonic treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call