Abstract

AbstractWe report on nano-scale optical effects of amorphous silicon layer conformally deposited on randomly textured zinc oxide layers on glass substrates investigated by near-field scanning microscopy. Such textured layers are used in thin-film photovoltaic devices to enhance light trapping. Experimental results are compared to theoretical data, obtained from large scale finite-difference time-domain simulations. Light localization on the surface of the textured interface and a focusing of light by the structure further away are observed. The measurements are compared with simulations, which provide additional insight into the light intensity distribution inside the solar cell on a nm-scale. It will be shown how this information can be used to optimize light trapping in thin-film solar cells using an amorphous silicon solar cell as an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.