Abstract

Nano-textured Au surfaces were prepared on pre-stretched 2D polystyrene (PS) sheets sputtered with different thicknesses of Au. The Au-coated PS was subjected to thermal annealing above the glass transition temperature at ∼150 °C, thus undergoing surface area rescaling via a volume phase transition. The yellow color of the Au changed from the typical mirror-like appearance to a diffusive dark yellow, progressing to dark brown at the smallest feature size, hence, electromagnetic energy was coupled into the substrate. While the surface area footprint is the same after shrinking the PS, the roughness can be modified from the nano- to the micro-scale for different initial thicknesses of sputtered Au. The nanometer-sized features of surface wrinkles on the Au films make them suitable for surface-enhanced Raman scattering (SERS) sensors that can reach ∼104 counts per s per mW. The thermal diffusivity of the contracted surfaces was determined by a non-contact temperature wave method and was larger than that of PS (α ≃ 1.1 × 10-7 m2 s-1) with a linear scaling on the Au thickness: each 10 nm addition of Au increased the diffusivity by 4%. This allows improved heat dissipation from the laser irradiated spot during SERS measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call