Abstract

Abstract Formation of the nanoscale icosahedral quasicrystalline phase (I-phase) in the melt-spun Zr70Pd30 and Zr80Pt20 binary metallic glasses were reported. Local atomic structure in the glassy and quasicrystal (QC)-formed states were also analyzed by XRD and EXAFS measurements in order to investigate the formation mechanism of QC phase. The distorted icosahedral-like local structure can be identified around Zr atom in the Zr70Pd30 metallic glass. In the QC formation process, a change of local environment around Zr is detected, in which the approximately one Zr atom substitutes for one Pd atom. In contrast, since the local environment around Pt atom is remaining during the QC precipitation, it is suggested that the stable icosahedral local structure is mainly formed around a center Pt atom in the glassy state in Zr80Pt20. We also found that the local environment around Zr atom significantly changes during the quasicrystallization in the alloy. These results differ from those in the Zr70Pd30 metallic glass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.