Abstract

In this paper, a non-destructive nano-precision measurement method for diamond tool cutting edge radius is presented. The basis of the method is that the profile of a tool cutting edge can be copied by indenting the tool cutting edge into the surface of a selected material, and that the copy of the profile can be measured at nano-precision level using AFM. The selected material elastic error compensation coefficient has to be determined to cancel out the effect of elastic spring-back. Copper was selected as the indentation piece material due to its (1) high rigidity and high density, (2) large Young’s modulus and (3) low yield strength. The elastic error compensation coefficient for the copper material is determined through the indentation of a tungsten carbide tool edge on the copper surface. By comparing the actual tool edge radius measured using scanning electron microscope (SEM) on the sectional view of the tungsten carbide tool with the one measured from the copied profile of the tool edge on the copper surface, the coefficient is obtained. Three diamond tool edge radii were obtained using the proposed method. Analysis is given for the accuracy of the proposed method, showing that as far as the error elastic compensation coefficient is consistent with the copper material used, the only source of errors with the measurement will come from the device for measuring the indented profile on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.