Abstract

Molybdenum disulfide (MoS2), attracts great attention in hydrogen evolution reaction (HER) field, however, low catalytic activity sites and poor conductivity still limit its further application. In this study, an efficient hydrogen evolution electrode with nano-pom-pom multiphasic MoS2 uniformly grew on porous carbonized wood (NP MoS2/CW) was developed. Interestingly, the nano-pom-pom are stacked from sheets of MoS2. Fully exposed active edges of nano-pom-pom MoS2 and high excellent electrical conductivity of carbonized wood enhance collectively electrocatalytic performance for HER. Specifically, the NP MoS2/CW electrode requires an overpotential of 109.5 mV and 305 mV to achieve the current density of 10 mA cm−2 and 400 mA cm−2, respectively (0.5 M H2SO4). NP MoS2/CW has excellent electrocatalytic performance and stability in acidic and alkaline media due to the perfect combination of NP MoS2 unique nanostructure and the unique properties of CW. Therefore, the present work provides a promising strategy into the rational development and utilization of MoS2 for the development of hydrogen evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call