Abstract
We propose novel nano-plasmonic-based structures for rapid sequencing of DNA molecules. The optical properties of DNA nucleotides have notable differences in the ultraviolet (UV) region of light. Using nanopore, bowtie, and bowtie-nanopore compound structures, probable application of the surface plasmon resonance (SPR) in DNA sequencing is investigated by employing the discrete dipole approximation method. The effects of different materials like chromium (Cr), aluminum (Al), rhodium (Rh), and graphene (Gr) are studied. We show that for Cr/Al/Gr/Rh, the nucleotide presented shifts the SPR spectra for the nanopore 1/29/5/34 to 14/39/15/67 nm, bowtie 8/2/49/38 to 31/20/79/55 nm, and bowtie-nanopore compound 25/77/5/16 to 80/80/22/39 nm. The Cr-based compound structure shows excellent sensitivity and selectivity which can make it a promising methodology for DNA sequencing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.