Abstract
Polyelectrolyte multilayers gain their importance from their applicability to a wide variety of functional building blocks. The ability to create these multilayers as laterally nano-patterned films, which has only been scarcely investigated so far, augments the functionality of the multilayer and makes it valuable for applications that require nanoscale features or periodic arrangement, such as photonic devices, catalytic surfaces, and biomedical applications. In this study we reveal how the lateral confinement imposed by block copolymer nano-domains in thin film templates affects the assembly of the deposited polyelectrolyte layers at different ionic strengths, and how the combined effects of nano-confinement and ionic strength dictate the final structure of the multilayer. These fundamental insights provide the basis for successful construction of nano-patterned, functional coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.