Abstract

Electrically driven dynamic spreading of drops on soft solids is of fundamental importance in a plethora of applications ranging from bio-medical diagnostics to liquid lenses and optoelectronics. However, strategies reported in this regard are challenged by the fact that the spreading gets significantly arrested due to viscoelastic dissipation at the three phase contact line. Circumventing these limits, here we bring out a possibility of substantial augmentation in the rate of electro-spreading on a soft matrix by deploying nano-scale fluidic suspensions of optimal volume fraction. We attribute these findings to a consequent increment in the electrical stresses toward combating the viscoelastic dissipation in the interfacial layer. We also present a simple scaling theory that unveils the manner in which the nano-suspension alters the spreading dynamics of a droplet, effectively by changing the final equilibrium contact angle. These findings open up new possibilities of using nano-fluids of optimal concentration toward modulating the dynamic spreading of a drop on a deformable substrate, a paradigm hitherto remaining unexplored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call