Abstract
Prussian blue analogues (PBAs) are reliable and promising cathode materials for aqueous sodium-ion batteries (ASIBs) owing to their open three-dimensional frameworks, outstanding stability, and low production costs. However, PBAs containing only a single type of transition-metal ion often have limited charge-storage capacities in aqueous systems. This study reports the first example of K0.11Ni0.39Co0.79[Fe(CN)6]·2.04H2O nanoparticles (Ni/Co-PBA) being used as a high-capacity cathode material for ASIBs. Owing to multi-electron redox reactions involving Co and Fe ions, Ni/Co-PBA has an initial capacity of 65 mAh g−1 and a capacity retention rate of 80% after 1000 cycles at 1.0 A g−1, indicating its outstanding cycle performance and capacity retention. Ex-situ x-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and the galvanostatic intermittent titration technique were used to analyze the redox mechanisms and kinetics of Ni/Co-PBA. Ni/Co-PBA-based ASIBs are among the most promising energy-storage technologies for large-scale fixed energy-storage systems because of their outstanding electrochemical performance, low costs, and high efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.