Abstract

AbstractThe growing use of plastic materials has led to the continuous accumulation of wastes in marine environments, which fragment into hazardous micro‐and nanoplastics. These plastic particles absorb toxic organic pollutants on their surface, support bacterial biofilms growth, and propagate through the food chain, posing serious risks for human health. Therefore, nano/microplastics pollution has become a global issue, making their definitive elimination compulsory. Self‐propelled nano/microrobots have demonstrated efficient removal of nano/microplastics from water, combining enhanced physicochemical properties of nano/microscale materials and active motion. During the last year, the potential of this technology to degrade nano/microplastics has been investigated. Here, the most advanced strategies for nano/microplastics capture and subsequent degradation by autonomous nano/microrobots are critically reviewed. A short introduction to the main propulsion mechanisms and experimental techniques for studying nano/microplastics degradation is also provided. Forthcoming challenges in this research field are discussed proactively. This perspective inspires future nano/microrobotic designs and approaches for water purification from nano/microplastics and other emerging pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.