Abstract

Increasing energy demands require new materials, e.g., thermoelectrics, for efficient energy conversion of fossil fuels. However, their low figure of merit (ZT) limits widespread applications. Nanostructuring has been an effective way of lowering the thermal conductivity. However, grain growth at elevated temperature is still a big concern, for otherwise expected to be long-lasting thermoelectric generators. Here, we report a porous architecture containing nano- to micrometer size irregularly shaped and randomly oriented pores, scattering a wide spectrum of phonons without employing the conventional rattling phenomenon. Lattice thermal conductivity reaches the phonon glass limit. This design yields >100% enhancement in ZT, as compared to the pristine sample. An unprecedented and very promising ZT of 1.6 is obtained for Co23.4Sb69.1Si1.5Te6.0 alloy, by far the highest ZT ever reported for un-filled skutterudites, with further benefits, i.e. rare-earth-free and improved oxidation resistance enabling simple processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.