Abstract

Development of optimal scaffolds for bone tissue engineering and regeneration is still a challenge, since many materials and structures have been proposed but few have reached clinical expectations. This work reports on the preparation and characterization of SiO2-CaO and SiO2-CaO-P2O5 sol–gel derived monoliths, with potential application as glass scaffolds for bone regeneration, exhibiting a nano/macro trimodal pore size distribution, including pores of ~100’s of micrometers (μm), several microns and just a few nanometers (nm) in size. Interconnected macropores (~20–200 μm) have been obtained in the present work by polymerization-induced spinodal phase separation along with the sol–gel transition, when a water soluble polymer [poly(ethylene oxide)] was added to the sol–gel solution; the several-micron pores are spherical and isolated and might be the result of secondary phase separation by nucleation-growth mechanism; the interconnected nanopore (~5–25 nm) structure of the macroporous gel skeleton, on the other hand, was tailored by solvent exchange procedures. The morphological and textural characterization of these materials was performed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray ultra microscopy (XuM), nitrogen adsorption and mercury intrusion porosimetry. The factors affecting the porosity exhibited by the scaffolds, such as glass composition and solvent exchange conditions, have been assessed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call