Abstract
Residual stress could be induced by machining processes like milling which can greatly affect the fatigue life of fabricated parts, especially in dynamic loading conditions. In metal cutting operations, machining induced residual stresses can be explained in the terms of machining forces and temperatures of the cutting zones. This thermo mechanical loading along with the resulted metallurgical changes are the main sources of residual stresses generation at the surface of machined workpiece. Researchers have proved the superior properties of nanofluids over the conventional coolants to reduce the intensity of thermo mechanical loading in machining process which will affect the residual stresses caused by machining. Therefore, in this paper, silver nanoparticles in the water-soluble oil have been used for reducing the mechanical and thermal loads in the milling process. The cutting forces, temperature of the cutting zone, surface roughness and the residual stress of machined surface have been measured experimentally in milling of hardened steel AISI 4140 for various nanoparticle’s concentration, feeds and cutting speeds. Results show that increasing the concentration of Nano-particles in base fluid from 0.5 to 3.0% wt., will make machining surface residual stresses more compressive averagely by about 66.67% compared to conventional cutting fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.