Abstract

In drilling deep complex formations, most drilling fluid additives have insufficient temperature and salt tolerance, resulting in the decline of drilling fluid performance. This study used 2-acrylamide-2-methylpropane sulfonic acid, acrylamide, dimethyl diallyl ammonium chloride and modified nano-laponite to synthesize a nanocomposite filtrate reducer (ANDP) with excellent temperature and salt resistance, which can maintain the performance of drilling fluid. The structure of ANDP was analysed by a transmission electron microscope and an infrared spectrometer. The thermal stability of ANDP was studied by thermogravimetric analysis. The performance of ANDP was evaluated in a water-based drilling fluid. The mechanism was analysed per clay particle size distribution, Zeta potential, filter cake permeability and scanning electron microscopy imaging. The results show that ANDP has good thermal stability and the expected molecular structure. The filtration of freshwater drilling fluid after ageing at 200°C is 10.4 ml and that of saturated brine drilling fluid is 6.4 ml after ageing at 150°C. Mechanism analysis suggests that the ANDP increases the thickness of clay particle hydration layer and maintains the colloidal stability of the drilling fluid. ANDP inhibits the agglomeration of clay particles and significantly reduces the filtration by forming dense mud cake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.