Abstract

A three-dimensional porous nano-hydroxyapatite (nHA)/chitosan (CS) biocomposite was synthesized. The rod-like nHA grains of 15—30 × 5—10 nm in size were observed by TEM and confirmed by characteristic XRD patterns. The diameters of the interconnecting pores of the nHA/CS biocomposite, determined by SEM, were 120—300 μm. Standard critical-sized calvarial bone defect ( = 6.5 mm) was created in Sprague-Dawley (SD) rats. In group 1, nHA/CS was implanted and in group 2, no implant was made in the defect. After 1 week, the histological assessment of group 1 clearly showed that a large number of living cells were anchored in the pores of the nHA/CS implants. New bone formation, both at the edge and in the center of implants, was found as early as 2 weeks. Histological assays confirmed that the newly formed bone tissue was bioactive and neovascularized. After 5 weeks, the mineral content and volume of the newly formed bone tissue in the defects were significantly greater in group 1 than in group 2 (p < 0.01). These results indicate that implantation of the nHA/CS enhanced the repair of bone defect and confirm the potential of this biocomposite as a bioactive bone grafting substitute.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call