Abstract
Tissue engineering aims at resolving problems such as donor shortage and immune rejection faced by transplantation. Scaffolds (artificial extracellular matrices) have critical roles in tissue engineering. Recently, we developed nano-fibrous poly(L-lactic acid) scaffolds under the hypothesis that synthetic nano-fibrous scaffolding, mimicking the structure of natural collagen fibers, could create a more favorable microenvironment for cells. This is the first report that the nano-fibrous architecture built in three-dimensional scaffolds improved the features of protein adsorption, which mediates cell interactions with scaffolds. Scaffolds with nano-fibrous pore walls adsorbed four times more serum proteins than scaffolds with solid pore walls. More interestingly, the nano-fibrous architecture selectively enhanced protein adsorption including fibronectin and vitronectin, even though both scaffolds were made from the same poly(L-lactic acid) material. Furthermore, nano-fibrous scaffolds also allowed >1.7 times of osteoblastic cell attachment than scaffolds with solid pore walls. These results demonstrate that the biomimetic nano-fibrous architecture serves as superior scaffolding for tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.