Abstract

Carbon nanotubes (CNTs) were incorporated at 0.5 wt% in epoxy resin using sonication at two different levels of amplitude (50% and 100% of 400W nominal sonication power). The CNTs modified epoxy systems were used to manufacture carbon fibre reinforced laminates (CFRPs). All specimens were subjected to thermal shock and hygrothermal exposure. The presence of CNTs did not alter the water absorption profiles for the epoxy resin, but it resulted in a spectacular 40% reduction in the water uptake at equilibrium for the CFRPs. The interlaminar shear strength of the CFRPs was not significantly affected by the thermal shock cycles; however it was reduced by 50–60% after hygrothermal exposure. The addition of CNTs led to slightly lower interlaminar shear strength values in the as-manufactured state. However their presence did not accelerate the deterioration of the strength after the environmental exposure. Although the addition of CNTs did not significantly influence the thermomechanical properties of the resin, they were beneficial in the case of the CFRPs since (i) they enhanced the storage modulus and glass transition temperature and (ii) limited the deterioration of these properties after thermal shock and hygrothermal exposure. The amplitude level during sonication which determined the dispersion state and length of the CNTs had a clear effect on the durability of the studied systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.