Abstract
Low-grade electronic waste heat lower than 100 °C widely exists in information technology equipment. Waste heat from data centers is particularly concerning. A micro heat engine (or Carnot battery) that is suitable for the direct recovery of low-grade waste heat during the cooling of electronic devices is promising. In this study, a novel looped heat pipe battery (LHPB) was proposed to achieve the aforementioned function. By absorbing heat through the evaporator of the proposed LHPB, the working fluid was transformed into high-speed vapor and blasted the generator rotor sealed in the LHPB condenser, which directly converted waste heat into electricity. The proposed LHPB can realize excellent thermal management and effective waste heat recovery simultaneously. The experimental results revealed that under the heat load of 150 W with a rated 12 V fan cooling, the device can maintain the temperature of the heat source at 72 °C, and the maximum output electrical power is 6.19 mW. The nominal power usage effectiveness is lower than 1.01. Even though the generated electrical power is still low in the present form, this pioneering study might open novel avenues for electronic cooling and waste heat recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.